〈研之有物〉讓生物分子躍然紙上 專訪洪上程
研之有物 2019-03-10 12:00
生物分子「摺」學
生物分子 (Biomolecule) 是指存在於生物體內的分子,包含人體中的膽固醇、DNA、還有微生物和植物產生的天然物等等。生物分子大多為有機化合物,由碳、氫、氧、氮、硫等原子,依循大自然的規則組成精巧的結構,彷彿造物主的摺紙作品。現在,你也能透過手中的紙張,摺出存在於你體內的生物分子。
紙張的超級變變變
多數人聽到「摺紙」,會想到摺紙鶴、摺東南西北,就是小孩子的遊戲。但新式摺紙先驅 Robert Lang 於演講時曾分享:「摺紙的精髓, 在於摺的動作,在於成形的過程。」
摺紙只有一個簡單的方程式:想好要摺的結構 → 設計摺紙步驟 → 摺出成品。
摺紙的這種思考方法,和科學家合成生物分子的思考方法類似。先從大到小,運用 X 射線晶體學、核磁共振成像、低溫電子顯微鏡等設備與技術,窺見生物分子的結構樣貌,並將生物分子結構以反合成分析拆解成小單元;接著,基於有機化學、分子動力學等知識,逆推這些小單元如何組合成完整的生物分子,從小到大,設計出合成反應的步驟。
「不是硬記公式,否則到了實驗室不一定做得出來。」洪上程提醒:要從週期表出發,先了解碳、氫、氧、氮、硫等元素的特性,以及了解這些元素和元素鍵結會形成哪種官能基團,從這些關聯去推理合成反應。
如果這太抽象的話,摺紙可以幫助理解。洪上程拿出一些小紙片:「這些三角形、四角形、五邊形、六邊形,就像生物分子的最小建構單元,可以組合成很多摺紙造型,也能變化出很多生物分子結構。」
摺出你體內的小夥伴
1953 年華生 (James Watson) 和克里克 (Francis Crick) 根據弗蘭克林 (Rosalind Franklin) 的X光晶體實驗結果提出 DNA 雙股螺旋結構圖,華生和克里克並於 1962 年獲得諾貝爾生理學或醫學獎。
1976 年理察 · 道金斯 (Richard Dawkins) 出版《自私的基因》一書,從演化論的角度說明 DNA 如何決定生物的行為。簡要地來說,我們的所作所為都是為了存活並繁衍基因組合,讓 DNA 可以不斷複製、永久傳承,成為「永恆的基因」。
默默操控我們所作所為的 DNA ,是由核苷酸組成的生物大分子,而核苷酸是由碳、氫、氧、氮、磷等原子鍵結組成。說了這麼多,DNA 雙股螺旋究竟長什麼模樣?不妨拿出一張紙,依下圖摺摺看:
除了 DNA ,還有另一種可以用摺紙呈現、跟我們緊密相關的生物分子:青黴素。
1928 年弗萊明 (Alexander Fleming) 在長滿細菌的培養皿中,意外觀察到角落長了一塊青黴菌、而且周圍都沒有細菌滋長。無心插柳,弗萊明想到這塊綠綠的可能與殺菌有關,並進行實驗證明青黴菌含有殺菌的成分,也就是青黴素。
青黴素的化學式為 C9H11N2O4S,是由碳、氫、氮、氧、硫鍵結組成的生物分子,也人類最早從大自然發現的抗生素,並作為藥品持續使用至今。久仰其名,本尊究竟長什麼模樣?如下圖,其核心結構由五環 (五邊形的環)+四環 (四邊形的環) 組成,這也是青黴素具備殺菌活性的構效之一。
但是,你有沒有想過──摺紙會不會摺反呢?如果大自然的創造部門,創造出像照鏡子般相反的生物分子,會有什麼問題?這可以用「膽固醇」的結構來舉例。
說到膽固醇,通常會自然聯想到心血管疾病。其實膽固醇不是只作惡,它在我們體內扮演重要角色,是細胞製造細胞膜的原料、也是合成重要荷爾蒙 (例如性荷爾蒙) 及膽汁的材料。
膽固醇的化學式為 C27H46O,是由碳、氫、氧鍵結而成的生物分子。其分子的核心結構,由三個六環 (六邊形的環)+一個五環 (五邊形的環) 組成,如下圖:
但若膽固醇的結構摺反了,看起來就像是鏡子的反射,這樣就出現「鏡像」的問題。洪上程拿出兩枚摺紙作品對照,這種鏡像的產物,在有機化學領域稱為鏡像異構物 (Enantiomer) 。
鏡像異構物就像人的左右手,請伸出你的左右手看看,兩隻手看起來很像,但上下交疊卻無法完全疊合。你的左右手不是同一隻手,鏡像異構物在結構上也不是同一種化合物,在生物體內發生的化學反應也往往不同。「鏡像」是大自然有趣的現象,然而在合成有機化合物時需特別注意,尤其是在合成藥物時,救人與害人只有一鏡之隔。
看了青黴素和膽固醇和兩種摺紙,你是否有觀察到:生物分子結構主要由五邊形、六邊形的環組成。這是為什麼?
五環和六環為何最常見
現實生活的演藝界, 5566 成員隨著生涯發展而解散。但在生物分子界,原子以五環和六環的結構在一起反而相當穩定。
洪上程說明:「六環各個角的角張力最穩定,其次是五環,因此最容易維持這種結構存在於大自然中。」某些有機分子結構為四角形或三角形,其 90 度角和 60 度角的角張力比較大、該鍵結處蘊含較多燃燒熱,組成這種角度的原子或分子彼此容易鬧不合,並發生化學反應斷開連結。
洪上程以人工合成的立方烷 (Cubane) 為例,如下圖呈現為正四方體,其化學式為 C8H8,是由碳和氫組成的有機化合物。立方烷這個漂亮的正四方體,曾被人們認為不可能合成出來,因為各個角都是 90 度,角張力相當大,頂點和頂點間的碳—碳鍵處於充滿能量,且容易釋放熱能並產生鍵結變動的狀態。
然而, 1964 年芝加哥大學的 Dr. Philip Eaton 等人首先將立方烷合成出來,並運用其在燃燒時會釋放鍵結處所含熱能的特點,後與美國海軍研究實驗室 (United States Naval Research Laboratory) 合作,將立方烷改裝合成為性能強大的炸藥──八硝基立方烷 (Octanitrocubane),化學式為 C8(NO2)8。
其合成方式類似鋼蛋機器人的組裝強化,在立方烷四面體的八個頂點,把原本的氫原子拿掉,改成接上容易爆炸的硝基官能團 (-NO2) ,就變成可以製造軍火炸藥的八硝基立方烷。
別把結構當成武功秘笈背
如同上述的例子,若想合成大自然存在的生物分子、或是人工合成的有機化合物,要先做好小單元的片段,最後再組合成想要的完整分子結構。
然而,洪上程提到,學校很少教這些組合的過程,而是直接教你背最後的化學式、硬記化學結構。武俠小說中,常有這樣的情節:師傅丟一本武功祕笈給徒兒,言道「你不會就先背起來,長大就能體會其中的意義。」洪上程笑著問:「有機化學、生物分子,也要當作武功祕笈這樣背嗎?」
透過摺紙培養興趣、在手中賞玩生物分子結構,是洪上程在科普演講中讓大人和小孩放下武功祕笈所做的嘗試。在有機化學領域研究與教書多年,更與研究團隊攜手獲得國家新創獎,洪上程工作之餘的休閒活動,就是坐在家裡客廳思考如何設計摺紙。
此外,洪上程提到許多小孩曾經都很愛東看西看、東問西問,但若家長或老師回答不出來,往往就會從小孩的頭殼巴下去,並罵道:「囝仔人有耳無嘴」。這就像有人在舞台上唱歌,萬一台下聽眾隨口說聲「唱歌那麼難聽」,從此這名演唱者可能就不敢再拿起麥克風。
「現在小孩壓力很大,我在思考如何讓人覺得快樂,例如看看這些漂亮的摺紙作品,可能心情會蠻好的。」洪上程說完並問:你知道什麼是最長的英文單字嗎?
聽到這個問題,通常會在腦海搜索、振筆疾書,但英文單字寫再長也才一張 A4 頁面。「其實,最長的字是 smiles (笑容),兩個 s 中間有 1 英里長~」洪上程笑呵呵地公布答案,並希望透過分享如何玩摺紙,讓人們多一秒快樂,同時也少一秒憂愁。
原文連結:讓生物分子躍然紙上 專訪洪上程
延伸閱讀:
- 如何發揮多重資產策略的最大優勢?
- 掌握全球財經資訊點我下載APP
文章標籤
上一篇
下一篇