menu-icon
anue logo
馬來西亞房產鉅亨號鉅亨買幣
search icon


區塊鏈

DWF 2024年加密預期:DAI的潛力與挑戰,通過Web3引領AI未來

BlockBeats 律動財經


在年末之際,我們將探討今年最熱門的議題之一——人工智慧(AI)。過去一年,AI 成為討論的焦點,源於 OpenAI 推出的 ChatGPT 3.5。這一發布展示了 AI 的巨大經濟潛力,引發了全球關於其未來、影響和相關風險的討論。

cover image of news article
律動財經圖片

隨著樂觀情緒的增長,懷疑論也隨之而來,潛在的後果開始引起監管機構的警覺。由於 AI 的迅猛崛起和模糊的監管框架,它讓人想起加密貨幣領域的早期階段。人們將這兩個行業進行了比較,突出了 Web3 的去中心化特性,似乎與 AI 的潛在中心化力量相輔相成。

很快,幾乎每個 Q1 的 Web3 風投討論都集中在 AI 的變革潛力上(有時候我會思考自己是參加的是 Web3 活動還是 AI 活動)。在這一年中,我們還看到一些風投公司轉向 AI,或將其納入其投資版圖中。

隨著炒作的熱情逐漸消退,DWF Ventures 現在希望以公正的視角重新審視 AI 領域。本文簡要概述了 AI 的演進過程以及它如何達到目前的熱度。然而,文章的敘述方式有所不同,我們將從傳統關注 AI 如何影響 Web3 轉向探討相反的問題——Web3 如何影響 AI。在這個探索中,我們深入探討了去中心化和 Web3 如何作為催化劑,解決 AI 當前面臨的挑戰。


AI 簡要概述及 ChatGPT 3.5 的突破

圖源:Khan, Pasha, & Masud, 2021

與最近圍繞 AI 的炒作熱情相反,其歷史可以追溯到上世紀 30 年代。圖靈在 1950 年的工作,比如圖靈測試,為 AI 奠定基礎。儘管早期對 AI 存在樂觀情緒,但由於計算障礙和無法滿足實時需求,進而引發了上世紀 70 年代的「AI 寒冬」。上世紀 80 年代,專家系統使 AI 煥發活力,利用知識數據庫來模擬人類專業知識。這一時代也見證了連接主義的復興和遞歸神經網路的興起。

然而,專家系統在知識獲取和實時分析方面面臨挑戰,導致在上世紀 90 年代出現了衰退,個人電腦的性能也導致其相關性逐漸減弱。多年來,AI 領域發展迅速,分支出機器學習、自然語言處理、計算機視覺、語音識別等各種技術領域。這些發展使得 AI 從簡單的問題解決,逐漸發展到在複雜應用領域中進行深度學習。

圖源:Mukhamediev et al., 2022

在發展過程中,AI 經歷了各個子領域的融合。其中,機器學習和大語言模型(LLM)領域,在轉換垂直領域取得了重大進展。Ashish Vaswani 等人的論文《Attention is All You Need》明顯啟發了生成式預訓練轉換器(GPT)模型。

此後,大量的 GPT 模型出現,如雙向的「BERT」GPT 和 OpenAI 團隊的 GPT。在 ChatGPT 之後,出現了開源的替代方案,如 Falcon 和 LLaMA2,加劇了對下一代 GPT 迭代的競爭,潛在地更接近人工通用智能(AGI)。

GPT 的炒作有助於將 AI 從學術界解放出來,獲得數十億人關注。在發布後的兩個月內,OpenAI 創造了每周活躍用戶 1 億的最快的發展速度。根據麥肯錫最近的一項研究,目前約有 51% 的科技行業專業人士在他們的工作中使用 AI。

AI 現實:在中心化 AI 中引導社會認知及其侷限性

Vitalik Buterin 在他的文章中進行的最新調查表明,許多人擔心出現壟斷版本的 AI,因此傾向於延遲其進展。

圖源:My techno-optimism

最近對 AI 的擔憂激增可以追溯到 ChatGPT 迅速走紅,其人類化的回答是推動因素。然而,大多數人沒有意識到,雖然 GPT 模仿人類互動,但它並不是通用 AI(AGI)。

每次 GPT 生成一個輸出時,它在統計上是變化的,其缺乏一致性和事實準確性的保證。此外,GPT 還面臨其他限制,但其最突出的缺點在於無法進行邏輯推理,尤其在數學方面十分明顯。

圖源:《GPT 語言模型的侷限性在於其在「少樣本學習」方面的能力較弱》

鑒於圍繞 AI 存在的眾多關切,以及高效管理大型 AI 模型所面臨的現有挑戰,探索將 Web3 與 AI 整合成為緩解 AI 面臨挑戰的潛在途徑。利用 Web3 中固有的去中心化和分布式計算原則,有望幫助解決當前 AI 系統面臨的問題。

DAI(去中心化 AI)之路:概述、潛力和挑戰

由於 AI 能力在中心化系統中的集中,引發了對數據訪問、模型相關性以及 AI 應用的整體可持續性的擔憂。中心化的 AI 系統面臨着重大的障礙,尤其是對於專有的大型數據集。

來源: Elon』s tweet

這導致了按查詢計費,X 設置了每日有限的帖子查看次數。不久後,Grok、X GPT 的發布使用戶能夠實時訪問 X 的數據。這種模式創建了經濟屏障,並引發了有關 AI 利益可及性和包容性的問題。

此外,由於已發布模型快速過時,如果沒有持續的數據更新,將在保持相關性和準確性方面面臨面臨重大挑戰。目前,ChatGPT 3.5 的訓練數據包含截至 2022 年 1 月的資訊。Llama 2 也是在 2023 年 1 月至 2023 年 7 月的數據上進行訓練的。

針對這些挑戰,DAI 嶄露頭角,為中心化的侷限性提供了潛在解決方案。

來源: (Janbi et al., 2023)

DAI 呈現了一種替代軌跡,以應對中心化模型固有的挑戰。Janbi 等人最近發表的一篇元分析論文作為一份全面指南,詳細介紹了 DAI 的五個主要領域。

來源: (Janbi et al., 2023) + DWF Ventures

DAI 的挑戰

DAI 帶來了 AI 發展中的一場令人興奮的變革,提供了諸多優勢。然而,認識到伴隨這些進步而來的挑戰至關重要。

來源: (Eduardo, L., & Hern, C. ,1988) +DWF Ventures

結論

總的來說,邁向 DAI 的旅程展現出巨大的潛力。實現 DAI 的全部潛能依賴於達到關鍵質量,這受到現有 AI 用戶群的推動。由於供應商和用戶有限,開源替代方案面臨一些障礙,而 ChatGPT API 為大眾市場提供了實際而經濟的選擇,提供了便利和可靠性。

然而,考慮到壟斷性通用 AI 可能帶來的潛在後果,個體在選擇和行動中應重新權衡便利性與去中心化之間的取捨。在更廣泛的層面上,Web3 和 AI 社區的創新者可以通過重新定義 AI 工作流、重新構想基礎設施、擁抱創新範式、高效管理,以及開發符合去中心化原則的應用程序來應對這些挑戰。在我們繼續這條道路的同時,合作、包容和道德考慮將是塑造一個真正造福人類的 DAI 景觀的關鍵。

原文連結

暢行幣圈交易全攻略,專家駐群實戰交流

▌立即加入鉅亨買幣實戰交流 LINE 社群(點此入群
不管是新手發問,還是老手交流,只要你想參與加密貨幣現貨交易、合約跟單、合約網格、量化交易、理財產品的投資,都歡迎入群討論學習!

前往鉅亨買幣找交易所優惠

文章標籤



Empty